265 research outputs found

    Multi-scale Modularity in Complex Networks

    Full text link
    We focus on the detection of communities in multi-scale networks, namely networks made of different levels of organization and in which modules exist at different scales. It is first shown that methods based on modularity are not appropriate to uncover modules in empirical networks, mainly because modularity optimization has an intrinsic bias towards partitions having a characteristic number of modules which might not be compatible with the modular organization of the system. We argue for the use of more flexible quality functions incorporating a resolution parameter that allows us to reveal the natural scales of the system. Different types of multi-resolution quality functions are described and unified by looking at the partitioning problem from a dynamical viewpoint. Finally, significant values of the resolution parameter are selected by using complementary measures of robustness of the uncovered partitions. The methods are illustrated on a benchmark and an empirical network.Comment: 8 pages, 3 figure

    Temporal Pattern of Online Communication Spike Trains in Spreading a Scientific Rumor: How Often, Who Interacts with Whom?

    Get PDF
    We study complex time series (spike trains) of online user communication while spreading messages about the discovery of the Higgs boson in Twitter. We focus on online social interactions among users such as retweet, mention, and reply, and construct different types of active (performing an action) and passive (receiving an action) spike trains for each user. The spike trains are analyzed by means of local variation, to quantify the temporal behavior of active and passive users, as a function of their activity and popularity. We show that the active spike trains are bursty, independently of their activation frequency. For passive spike trains, in contrast, the local variation of popular users presents uncorrelated (Poisson random) dynamics. We further characterize the correlations of the local variation in different interactions. We obtain high values of correlation, and thus consistent temporal behavior, between retweets and mentions, but only for popular users, indicating that creating online attention suggests an alignment in the dynamics of the two interactions.Comment: A statistical data analysis & data mining on Social Dynamic Behavior, 9 pages and 7 figure

    TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics

    Full text link
    Online social networking services allow their users to post content in the form of text, images or videos. The main mechanism driving content diffusion is the possibility for users to re-share the content posted by their social connections, which may then cascade across the system. A fundamental problem when studying information cascades is the possibility to develop sound mathematical models, whose parameters can be calibrated on empirical data, in order to predict the future course of a cascade after a window of observation. In this paper, we focus on Twitter and, in particular, on the temporal patterns of retweet activity for an original tweet. We model the system by Time-Dependent Hawkes process (TiDeH), which properly takes into account the circadian nature of the users and the aging of information. The input of the prediction model are observed retweet times and structural information about the underlying social network. We develop a procedure for parameter optimization and for predicting the future profiles of retweet activity at different time resolutions. We validate our methodology on a large corpus of Twitter data and demonstrate its systematic improvement over existing approaches in all the time regimes.Comment: The manuscript has been accepted in the 10th International AAAI Conference on Web and Social Media (ICWSM 2016

    Classes of random walks on temporal networks with competing timescales

    Get PDF
    Random walks find applications in many areas of science and are the heart of essential network analytic tools. When defined on temporal networks, even basic random walk models may exhibit a rich spectrum of behaviours, due to the co-existence of different timescales in the system. Here, we introduce random walks on general stochastic temporal networks allowing for lasting interactions, with up to three competing timescales. We then compare the mean resting time and stationary state of different models. We also discuss the accuracy of the mathematical analysis depending on the random walk model and the structure of the underlying network, and pay particular attention to the emergence of non-Markovian behaviour, even when all dynamical entities are governed by memoryless distributions.Comment: 16 pages, 5 figure

    Preferential attachment with partial information

    Get PDF
    We propose a preferential attachment model for network growth where new entering nodes have a partial information about the state of the network. Our main result is that the presence of bounded information modifies the degree distribution by introducing an exponential tail, while it preserves a power law behaviour over a finite small range of degrees. On the other hand, unbounded information is sufficient to let the network grow as in the standard Barab\'asi-Albert model. Surprisingly, the latter feature holds true also when the fraction of known nodes goes asymptotically to zero. Analytical results are compared to direct simulations

    Understanding Complex Systems: From Networks to Optimal Higher-Order Models

    Full text link
    To better understand the structure and function of complex systems, researchers often represent direct interactions between components in complex systems with networks, assuming that indirect influence between distant components can be modelled by paths. Such network models assume that actual paths are memoryless. That is, the way a path continues as it passes through a node does not depend on where it came from. Recent studies of data on actual paths in complex systems question this assumption and instead indicate that memory in paths does have considerable impact on central methods in network science. A growing research community working with so-called higher-order network models addresses this issue, seeking to take advantage of information that conventional network representations disregard. Here we summarise the progress in this area and outline remaining challenges calling for more research.Comment: 8 pages, 4 figure

    Coeovolutionary Threshold Dynamics

    Get PDF
    We present a generic threshold model for the co-evolution of the structure of a network and the state of its nodes. We focus on regular directed networks and derive equations for the evolution of the system toward its absorbing state. It is shown that the system displays a transition from a connected phase to a fragmented phase that depends on its initial configuration. Computer simulations are performed and confirm the theoretical predictions.Comment: 4 pages, 4 figure

    Imperfect spreading on temporal networks

    Full text link
    We study spreading on networks where the contact dynamics between the nodes is governed by a random process and where the inter-contact time distribution may differ from the exponential. We consider a process of imperfect spreading, where transmission is successful with a determined probability at each contact. We first derive an expression for the inter-success time distribution, determining the speed of the propagation, and then focus on a problem related to epidemic spreading, by estimating the epidemic threshold in a system where nodes remain infectious during a finite, random period of time. Finally, we discuss the implications of our work to design an efficient strategy to enhance spreading on temporal networks.Comment: 5 page

    Dynamics of latent voters

    Get PDF
    We study the effect of latency on binary-choice opinion formation models. Latency is introduced into the models as an additional dynamic rule: after a voter changes its opinion, it enters a waiting period of stochastic length where no further changes take place. We first focus on the voter model and show that as a result of introducing latency, the average magnetization is not conserved, and the system is driven toward zero magnetization, independently of initial conditions. The model is studied analytically in the mean-field case and by simulations in one dimension. We also address the behavior of the Majority Rule model with added latency, and show that the competition between imitation and latency leads to a rich phenomenology

    Multiscale mixing patterns in networks

    Full text link
    Assortative mixing in networks is the tendency for nodes with the same attributes, or metadata, to link to each other. It is a property often found in social networks manifesting as a higher tendency of links occurring between people with the same age, race, or political belief. Quantifying the level of assortativity or disassortativity (the preference of linking to nodes with different attributes) can shed light on the factors involved in the formation of links and contagion processes in complex networks. It is common practice to measure the level of assortativity according to the assortativity coefficient, or modularity in the case of discrete-valued metadata. This global value is the average level of assortativity across the network and may not be a representative statistic when mixing patterns are heterogeneous. For example, a social network spanning the globe may exhibit local differences in mixing patterns as a consequence of differences in cultural norms. Here, we introduce an approach to localise this global measure so that we can describe the assortativity, across multiple scales, at the node level. Consequently we are able to capture and qualitatively evaluate the distribution of mixing patterns in the network. We find that for many real-world networks the distribution of assortativity is skewed, overdispersed and multimodal. Our method provides a clearer lens through which we can more closely examine mixing patterns in networks.Comment: 11 pages, 7 figure
    • …
    corecore